
THE FIRST LAW of THERMODYNAMICS: Conservation of energy 

Heat input dq 

Work done BY system dw 

If we identify du as the change in internal energy of the system (associated with 
changes in the kinetic and potential energy of the molecules),we write 

The “First Law” of Thermodynamics as:     dq = du + dw                             

If the work is mechanical work (expansion work), as we defined last time, then we 
can write dw = pdv, and 

 dq = du + pdv 

Internal energy is a STATE VARIABLE: the change in internal energy is the 
difference between initial and final states.  du is independent of path between 
initial and final states. 

The state variables, like u, are functions of any TWO independent intensive 
variables, e.g., p, T, v (specific volume). E.g., we can express u = u(v,T). 



JOULE’S LAW:  Joule’s experiment (a thought experiment here) demonstrated that, 
for an Ideal Gas, the internal energy u is a function of T only. Let’s see how to 
show this: 

Consider a gas expanding into an evacuated cylinder (vacuum).  Since p is zero, no 
mechanical work is done and dw = 0.  

Imagine that the process is also adiabatic (perfectly insulated walls), so dq = 0.  

Since dq = dw = 0, du = 0.  

Under these conditions, its clear that the volume of the gas changed, as did the 
potential energy of the molecular configuration.  Therefore the internal energy of the 
gas must be independent of volume, and is only a function of T.   

Joule showed experimentally that the temperature of the gas in such an experiment 
remained constant.   

Joule’s Law states: “if a gas expands without doing any work, and under adiabatic 
conditions, the temperature of the gas remains constant.”  

Corollary: Molecules of an ideal gas do not exert any attractive or repulsive forces 
on one another.  
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Specific Heats and Heat Capacities 

Specific heat and heat capacities for various substances allow for T changes to be 
calculated per unit of heat added to the substance.   

If heat is added to a substance at constant pressure,  we define the specific heat at 
constant pressure, cp, as  

(aside: m Cp is the HEAT CAPACITY – unit difference) 

If volume remains constant during heating, we define the specific heat at constant 
volume, cv, as  

If we know what values these properties have for ideal gases, then we can readily 
compute temperature changes that occur under addition of heat.   

We’ll start by deriving equivalent forms of the First Law for ideal gases that are 
easier to work with. 
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Start with the definition of cv: 

But if dv = 0 then dw = 0, and the First Law reduces to dq = du  

Therefore  

If we consider an Ideal Gas, u depends only upon T. 
Therefore the restriction on constant volume can be  
dropped, and 

First Law can then be written as  

Express the last term differently:  

Use  

At constant pressure,  and equation becomes 

Since   , we see 
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Equivalent form of first law for an ideal gas 

(generally true) 



Since  

In a constant pressure process, volume expands, and hence some of the heat 
added goes into expanding the volume instead of increasing T 

For dry air;  

Where did those values come from? (let’s see how cp and cv values are derived).  

From statistical mechanics,  
per molecule per mole 

which is an expression for the  

Internal Energy per degree of freedom. (This expression is valid as far as kT <<  
electronic excitation levels (<104 °K)). 

For monatomic gases we have 3 degrees of freedom associated with x,y,z direction 
velocities.  Hence 

Hence  (per unit mass), since  

Also, since 
we have  
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For diatomic molecules, more closely representative of air (e.g. O2, N2), we 
have higher order degrees of freedom. Consider the following model,  

a diatomic molecule is oriented  
along the y-axis 

- This molecule has 3 degrees of freedom for translational motion and 2 
rotational modes (x,z axes) 
- The moments of inertia around the x & z axes are very much larger than the 
moments of inertia around the y-axis.   
-  The molecule also has 2 vibrational modes (position & velocity) but the 
vibrational modes are usually dominated by the rotational modes for 
atmospheric (troposphere/stratosphere) temperatures. Thus, 

so and 

Therefore for dry air (modeled as an ideal, diatomic gas) we can estimate 
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Quick Summary thus far: 
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•  The First Law is du = dq – dw 
•  Heat capacities are defined as partial derivatives of q with respect to T, at 

constant v  OR  p. 
•  The internal energy of an ideal gas is a function of temperature only, so 

the following is always true: 

•  For an ideal gas, we can then write the First Law as either 

•  cp and cv can be found theoretically for monatomic and diatomic gases 
•  So we can compute T changes (and thus internal energy changes, since 

they depend only on T!) if we know the heat in/out and dv or dp changes 
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dq = cvdT + pdv
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dq = cpdT − vdp
€ 

du = cvdT



ADIABATIC PROCESSES 
An adiabatic process involves no heat exchange between a substance & its 
surroundings. Hence dq = 0  

Therefore, for an adiabatic transformation, dw = -du = cv dT 

 Work done is equal to the decrease in internal energy 

Notice that the adiabat is drawn steeper than the isotherm. Why? 
During the adiabatic compression dq = 0 and p dv <0 (volume decreases)  

To obey the First Law (du=dw), T must increase. In contrast, T remains 
constant during the isothermal compression. Since the final temperature is 
higher in the adiabatic compression, therefore (by Ideal Gas Law), final P must 
also be higher than for isothermal process: So adiabat is steeper than isotherm. 
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http://en.wikipedia.org/wiki/Adiabatic_process 

In this example 
two different paths 
are used to go 
from V1 to V2. 

PV = n RT 



The Adiabatic Air Parcel 

Idealized model of an air parcel is a small volume of air: 
•  Thermally insulated from the environment so temperature changes are adiabatic 
•  Parcel pressure immediately adjusts to environmental pressure 
•  Parcel moves slowly enough such that macroscopic KE is negligible portion of total energy  

Consider such a parcel moving about under adiabatic conditions 
  What is the change in temperature with height? 

Use First Law and assume Ideal Gas:  

or 
using the hydrostatic equation 

Dry adiabatic 
lapse rate  

In the above derivation we used the hydrostatic equation 
-Derivation 
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We chose this form over 

0 

(force balance) 



The Potential Temperature: Of fundamental importance to adiabatic 
processes in the atmosphere is the concept of potential temperature, θ	


Again use the First Law for an adiabatic process,  

or 

Integrating from where to some point 

which yields,  Poisson’s Equation 

is the temperature a parcel would acquire if it ascended or descended 
adiabatically from pressure   

We expect potential temperature to be conserved for (dry) adiabatic 
transformations. As the parcel moves about in the atmosphere under 
adiabatic conditions, its potential temperature θ does not change 10 

(e.g., choose                         ) 



Using potential temperature 
•  For an adiabatic process, 

•  θ is the temperature that a parcel of air would 
have if, starting with temperature T and pressure 
P, it were moved to a final pressure of 1000 mbar 

•  θ is conserved in an adiabatic process 
•  Lines of constant θ are also lines of constant 

entropy (isentropes). 

•  Stüve diagram (1927): Notice from eqn, for a 
chosen θ, T varies as Pk 

•  Constant-θ lines are straight (solid) lines if 
we choose the axes properly 

•  Which are isobars, isotherms? 
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Extension: atmospheric stability 
We already saw that the dry adiabatic lapse rate is 

What is the buoyant force on a parcel of air? Net buoyant force upward is Vg(ρ’-ρ) 
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Displaces ambient air 
V, T’, ρ’ 

ρgV ρ’gV 

Acceleration of the parcel is equal to the sum of the forces -- here, only bouyancy, so: 
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A dry parcel that starts at temperature T and is lifted Δz has a new temperature T – ΓΔz 
Let’s suppose the environmental T changes with height at a different rate, so the ambient 
temperature is T – γΔz. The excess temperature of the parcel over ambient air is Δz (γ - Γ) 



Atmospheric stability, continued 

When Δz (γ - Γ) is positive, the parcel is warmer than its surroundings and 
is accelerated upward (unstable atmosphere); if the opposite, a restoring 
force acts against the direction of any motion (stable atmosphere); if the 
atmosphere is neutral, its lapse rate is the dry adiabatic lapse rate 

In terms of θ 
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Other State Variables: Enthalpy 
Consider the addition of heat to a substance at constant pressure so that the 
specific volume increases from v1 to v2 ; the work done is p(v2 – v1 ) 

From First Law,  
Specific quantities 
are used here 

where h = u + pv   definition of ENTHALPY 

For constant pressure process,                               that is, the change  
in enthalpy is equal to the heat added (or heat extracted).  

Units of  or 

Enthalpy is useful for studying processes at constant pressure, and open systems.  15 

Still assuming constant p so 
work can be written this way 

Complete derivative (α is the same as v above) 

v1 
v2 
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dq = (u2 −u1)+ p(v2 − v1)
= (u2 + pv2 )− (u1 + pv1)
= h2 −h1



Aside: application of enthalpy balance in steady-flow system: 
energy balance for a single-stream, steady-flow system with negligible changes in kinetic 
and potential energies: q – ws = Δh, where ws is shaft work 

In the system shown (flow through a “throttling valve”), the pressure drops across the 
valve, but no shaft work is done. The flow through the valve is also adiabatic, since there 
is not much time or area for heat transfer. So we conclude Δh = 0 and such a valve is an 
“isenthalpic device” (internal and flow energies are interconverted). 

Since h = u + Pv and, for an ideal gas, Pv = RT, then for the ideal gas h = u + RT 

R is constant, and u = u(T) only, so we conclude h = h(T) only for an ideal gas.  
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“Joule-Thompson coefficient”, = 0 for an ideal gas 
(show…) 

From h = h(T,P), taking total derivative 
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dP and using a Maxwell relation 

The J-T effect is applied in the Linde technique, where the cooling effect is used to liquefy gases, and 
also in many cryogenic applications (e.g. for the production of liquid oxygen, nitrogen, and argon).  
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The Second Law of Thermodynamics 
(http://en.wikipedia.org/wiki/Second_law_of_thermodynamics) 

Clausius’ version: 
No process is possible whose sole result is the transfer of heat from a body 
of lower temperature to a body of higher temperature 

The second law of thermodynamics is an expression of the tendency that 
over time, differences in temperature, pressure, and chemical potential 
equilibrate in an isolated physical system. From the state of 
thermodynamic equilibrium, the law deduced the principle of the increase of 
entropy and explains the phenomenon of irreversibility in nature. The second 
law declares the impossibility of machines that generate usable energy from 
the abundant internal energy of nature by processes called perpetual motion 
of the second kind. 

In classical thermodynamics, the second law is a basic postulate applicable 
to any system involving measurable heat transfer, and defines the concept of 
thermodynamic entropy. 



The Second Law and Cyclic Processes 
The Second Law deals with the maximum amount, or fraction of, heat that can be 
converted to “work”.  For any thermodynamic system there is a theoretical limit to the 
conversion factor between heat & work. 
To study this process further – consider the CARNOT CYCLE (a cyclic process) 

CYCLIC PROCESS – a series of change in the state of a substance in which its 
volume changes and it does work, with the substance returning to its original state.  
Initial & final state are identical in a cyclic process. 
Since the initial & final states are the same,  for a cyclic process.  
Therefore  for a cyclic process. 
This implies  Net work done in a cyclic process is equal to the heat 

added to the system. 

Consider the following “heat engine” 
Engine Exhaust Heat 

The “efficiency” of this heat engine is defined as 

If then obviously 

A “perfect” engine 
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Input Heat 
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CARNOT CYCLE 


