
Nucleation Thermodynamics 

•  Fundamental question:  
How (why?) do cloud droplets form in the atmosphere? 
–  Water vapor can supersaturate as “closed” air parcels rise and cool (or 

cool some other way, e.g. radiatively) 
–  Will drops form as soon as relative humidity exceeds 100%? 
–  What do the first condensed drops look like (i.e., how large are they)? 
–  And a related question, how do they keep growing into precipitation-

sized drops? 

•  The process of forming a pure water droplet by condensation from 
the vapor phase, in the absence of a foreign particle or nucleating 
surface, is known as homogeneous nucleation. 

•  We ask the question: what is the energy cost of forming a water 
droplet from the vapor phase, and how does it depend on conditions 
(temperature, vapor pressure, size of droplet, …)? 



Before and after! 

Vapor only 
Vapor plus a droplet 

Same total water molecules, same T 

NT molecules 

Each has chemical 
potential (partial molar 
Gibbs free energy), µv 

(NT – n)  vapor molecules 
Each has chemical potential 
(partial molar Gibbs free energy), 
µv 

n liquid molecules 
Each has chemical potential 
(partial molar Gibbs free energy), 
µv 

Plus, we had to make an interface 

We used n molecules 
to make the drop 



Calculating G 
•  Start with the “after” energy calculation: 

•  The “before” calculation is straightforward: 
•  I think it’s easier to think about just the “final” energy calculation and see if we can 

find an equilibrium somewhere*. We don’t vary T as it’s already in equilibrium. The 
one thing that we can vary is the size of the droplet (called an “embryo” in nucleation 
theory). 

•  Notice that R and n both refer to the “size” of the embryo or droplet formed. We’ll 
need to get those into the same basis so we can vary only one “size” variable. 

•  We also need some guidance on how to compute µv and µl. 
•  Assuming we can do those things, then the general idea will be:  

€ 

Gfinal = NT −n( )µv +nµ l + 4πR
2σ

= NTµv +n µ l −µv( )+ 4πR 2σ

€ 

Gfinal = NTµv

size 

Energy 
(Gfinal) 

The slope of this curve is  
dG/dsize 

Is there anywhere where slope = 
0? That should be an equilibrium 
point (stable or not?) 

* Notice: if we subtract off initial 
energy – what is impact on plot? 



Energy calculations, continued 
•  Here’s the equation that expresses the difference between the initial and 

final states: 

•  First we need to eliminate either n or R. Let’s keep R. 
•  The volume of a drop with radius R, containing n molecules: 

if Vl is the volume occupied by one molecule of water in the liquid phase. 
Define (plays the role of a density-type variable, molecules per unit volume): 

•  So now,  

€ 

ΔG = n µ l −µv( )+ 4πR 2σ radius R 

€ 

4
3
πR 3 = nV l

€ 

nl =
1
V l

€ 

ΔG = (nl

4
3
πR 3 ) µ l −µv( )+ 4πR 2σ Notice we should be writing this as σLV, 

the surface tension between the liquid 
and the vapor (but we can look this up for 
whatever T we are doing the calcs for) 

Now we need to know how to deal with 
these terms! 



Deriving expressions for chemical potentials 
•  We go back to the definition of the chemical potential that we can apply to each 

phase. Remember dG = -SdT + pdV 
•  If we have just a single component, we can put this on a per-mole or per- molecule 

basis. Then we end up with, for each of the phases, 

•  That is close to what we are looking for: 

•  We restrict the phase change to a constant-T process, so the dT terms disappear. So 
now we have 

•  Remember our arguments about the relative magnitudes of the specific volumes 
(inverse of densities) of the liquid and the vapor. Based on that, we note vv >> vl, 

•  The Ideal Gas Law on a molecule basis is  

€ 

dgv = −svdT + vvdp = dµ v

dgl = −s ldT + vldp = dµ l

€ 

dµ l − dµ v = d(µ l −µ v ) = −s ldT + vldp+ svdT − vvdp

€ 

d(µ l −µ v ) = (vl − vv )dp

€ 

d(µ l −µ v ) ≈ −vvdp = −vvdev

€ 

evvv = kT

€ 

(µ l −µ v ) = − kTd ln ev

es

e

∫
Integration limits: 
Vapor pressure for saturated 
liquid (same as saturated vapor), 
to arbitrary vapor pressure e 



Note the limits of integration 

When  equilibrium is established and  

When  non-equilibrium exists,  

Integration yields,  

So now our equation for the energy change becomes, 

€ 

µl −µv = −kT ln e
es

µv −µ l = kT ln e
es

= kT ln S

S is the “saturation ratio” 

€ 

ΔG = (nl

4
3
πR 3 ) µ l −µv( )+ 4πR 2σ LV

= −(nl

4
3
πR 3 )kT ln e

es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 4πR 2σ LV

Let’s construct the plot we envisioned,  
G (or more properly, ΔG) as a function of R 

We have to specify S too! 
               (phase rule) 



Characteristics of the energy plot 

€ 

ΔG = −(nl

4
3
πR 3 )kT ln e

es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 4πR 2σ LV

If S < 1, then ΔG keeps 
increasing as we increase R  
minimum energy is if there’s no 

phase change!  

If S > 1, then we can find a region 
where ΔG decreases as we 

increase R  if we can get into this 
region, can keep growing drop 

€ 

dΔG
dR

> 0 for all R

€ 

dΔG
dR

< 0 for R > r*

dΔG
dR

= 0 for R = r*call this r* 
or rcrit 

This looks like an equilibrium condition! 
But is it a stable equilibrium? 

“energy 
barrier” of 
height ΔG* 



leads to  

Kelvin’s Equation 

€ 

rcrit =
2σ LVvl
kT lnS

rcrit is the critical size that must form by spontaneous collisions of vapor 
molecules.  This size is unstable w.r.t. vapor, such that if a single molecule 
attaches to the embryo, it will decrease in free energy while increasing in R.  If 
the embryo evaporates somewhat, free energy will also decrease, but for 
decreasing R, and evaporation (complete) is therefore favored.   

Clearly, for an embryo to grow into a cloud droplet, it must have a radius  ≥  rcrit. 

Take the derivative of the ΔG equation above, and set it to zero, and solve for rcrit. 

What happens to rcrit  
and ΔG* as S increases? 



Plot of Kelvin equation 
•  The Kelvin equation (applied to water) tells us the radius of a pure water drop in 

unstable equilibrium with a saturation ratio S 
•  Or, equivalently, given S, what size pure water drop is just in unstable equilibrium 

with the environment? 

€ 

rcrit =
2σ LVvl
kT lnS

Calculated at 5 ˚C (Cotton course notes) 

€ 

S =
pA
pA
0 = exp 2σM

RTρl r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Molar units; see density of the 
liquid shows up here (we 
assumed bulk properties 

extrapolate down to these 
small droplets) 

Molecular 
weight Note relationship 

between RH and S, s(%) 



Does this explain atmospheric cloud formation? 
•  If we can make drops bigger than ~1 micron, RH~100% (drop is large enough to “look like” a 

plane surface) 
•  Supersaturations in clouds rarely exceed ~1 - 2% (see shaded area below). We’d need to 

spontaneously cluster together enough molecules to form a droplet of radius ~ 0.1 micron 
•  As the size of the “embryo” increases, the likelihood of chance collisions forming a drop of that 

size decreases. We don’t expect this to happen for any embryo sizes greater than ~ 0.01 µm. 
•  An embryo of that size requires s ~ 12%  much greater than available in clouds 

Something else must lead to 
nucleation of drops in the 

atmosphere! 



Let’s examine homogeneous nucleation in a bit more detail by considering the following 
experiment.  Suppose we have a cloud chamber containing just water vapor.  Through 
cooling, we can control the supersaturation and can easily produce supersaturations of 
several hundred %.  At some value of supersaturation,  a fog would be observed to 
instantaneously form in the vessel when some critical supersaturation was achieved.   

 (Even smallest of embryos are activated)  

Here critically-sized embryos are ‘nucleated’- they quickly grow into visible cloud 
droplets as they are bombarded by vapor molecules.   

 R increases and         (free energy) decreases.   

To explore how this occurs we need to consider the rate that critically-sized embryos are 
nucleated by bombardment from vapor molecules.   

First, we need to know concentration of critically-sized embryos (embryo size 
corresponding to max embryo size allowed by chance collision.) 

Assume a Boltzmann distribution  

n(I)= concentration of unassociated (free) vapor molecules 

    with     R  for given  

(1) 



The flux of embryos growing past size r* (rcrit) is #cm-3s-1 

J is the nucleation rate;    # of critically-sized embryos nucleated per cm3 per 
second. 

B is the rate at which embryos of an area             intercept vapor molecules and 
thus nucleate.   

 B=bombardment rate    (s-1) 

B can be shown to be given by  

 m=molecular mass 

 p=vapor pressure  

   = radius of critically-sized embryos  

(2) 

(3) 



Saturation ratio 

Think 
about 
this on a 
linear 
scale … 
what 
would 
we 
observe 
in lab? 

Wow, we need a lot of 
vapor supersaturation to 
get “fast” nucleation rates 



At    

So, for 

Assume “appreciable” nucleation rate is  

With J and Bn(I) given, solve for       using equation (2) above.  Then use        expression 

to solve for corresponding      associated with this nucleation rate.  For this calculation       
assumes a value of 4.4. 

Examining Fig. 3.3 implies that as the supersaturation is increased, the nucleation rate 
remains essentially zero (or small) until the critical supersaturation is achieved, at which 
point it becomes very large over extremely short ranges of supersaturation.  



Homogeneous Nucleation Rate and Critical Cluster Size  
for Water at T=293 K 

(Seinfeld and Pandis, Table 10.4) 

S i* J (cm-3 s-1) 

2 525 2 x 10-54 

3 132 1.2 x 10-6 

4 66 0.84 x 106 

5 42 1.33 x 1011 

6 30 1.08 x 1014 

7 24 0.8 x 1016 

8 19 1.6 x 1017 

9 16 1.5 x 1018 

10 14 8.5 x 1018 



Extension:  
homogeneous nucleation of atmospheric particles?? 

•  Notice that if surface tension is lowered, rcrit and S can be lowered 
•  There is sensitivity to density as well  
•  If vapor pressure is very low, then large values of S can be achieved even 

for very trace amounts of a species 

•  Candidates: organic species that arise from photochemical reactions 
(emissions from pine trees and other vegetation) 

•  Sulfuric acid and water (a classic!) 
–  Probably affected by both ammonia and organic species 

€ 

rcrit =
2σ LVvl
kT lnS

€ 

S =
pA
pA
0 = exp 2σM

RTρl r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 


