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Aerosol Hygroscopicity Parameter, κ
(Petters and Kreidenweis, 2006)

Unifying parameter: κ
(relative hygroscopicity)
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Single parameter quantifying sub- and supersaturated hygroscopic growth



Why is This Important? 
Linkages between Problems, 

Measurement Methods, 
& Research Communities

Brian Kelsen, AP

[Marlm, 1999]
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Chemical Characterization
Measurements in ChamberFire Lab At Missoula 

Experiment (FLAME)

Combustion of 
Forest Fuels in Burn 

Chamber
Online Physicochemical 

Measurements in 
Adjacent Labs



Experimental Setup-FLAME Prequel

Mobile 
HTDMA

CCN 
Counter



Ammonium Sulfate at FLAME 2006
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• Relatively Easy Onsite Measurement Validation 



Experimental Procedure-Prequel to FLAME

2. Laboratory 
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NaCl in Water and in Methanol
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(a) Water Solution with Shape Factor of 1.04
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(b) Methanol Solution with Shape Factor of 1.04

• No Perceptible Artifacts for Known Inorganic Aerosols in CH3OH



Test Aerosol Critical Supersaturation from HTDMA
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GF Summary for Aerosol Extraction 
Experiments
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• Strong gradient in hygroscopicity for fuels-solvent matrix



Hygroscopic Parameter vs. RH
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Smoke Extractions Critical Supersaturations
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Summary of Extraction Experiments
HTDMA and CCN Hygroscopicity 
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FLAME 2006
Growth Factors as a Function of Fuel Type

• Some fresh smokes 
really like water

• Most grouped near 
typical values for 
Yosemite aged 
smoke+SOA mixture
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Chamise: Particle Shrinkage with Increasing RH
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• Larger particles were 
‘fluffier’ soot agglomerates

• Collapsing of 
agglomerates into more 
spherical particles at higher 
RH



Chamise: “Dry” Particle

Courtesy of R. Chakrabarty and P. Arnott



Chamise: “Wet” Particle

Courtesy of R. Chakrabarty and P. Arnott



9 November 2006
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• No growth & no 
shrinkage due to 
cluster collapse 
for fresh diesel 

emissions

• Role of small quantities of organic/inorganic 
constituents on soot clusters for growth
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• Similar to relationship for Yosemite 2002 smoke+SOA aerosol



κ for Small and Large Particles
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• Visibility-relevant vs. CCN-active 
particles can have substantially 
different hygroscopic properties



Missoula Comparison of derived κ’s
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• Effects of aerosol mixing or very low solubility 
compounds on water uptake properties?



Summary

• Based on κ, consistent hygroscopic growth properties 
for inorganic aerosols

• Consistent hygroscopic growth properties for 
extractions from FLAME Prequel

• For FLAME 2006, CCN measurements give larger κ
for low hygroscopicity cases
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Absorption as a Function of RH 
(courtesy of P. Arnott) 
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Affect of Aerosol Aging on Organic Hygroscopicity
(Petters et al., 2006)
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