Hygroscopic and Cloud Nucleating Properties of Fresh Smoke from Biomass Burning

> Picnic Rock Fire from ATS Simlab, April 2004

Motivation

• Fires in the West [Westerling et al., 2006]

- Visibility, Air Quality and Climate Effects
- Vital Importance of Aerosol Hygroscopicity

2002 Yosemite Aerosol Characterization Study

Subsaturated and Supersaturated Droplet Growth

Aerosol Hygroscopicity Parameter, κ (Petters and Kreidenweis, 2006)

Hygroscopic growth (RH _w < 95%, T = 25°C)	HTDMA (D _{wet} / D _{dry})	GF as f(RH _w)
CCN activity (RH _w > 100 %, T = 25°C)	CCNc (DMT)	S _c as f(D _{dry})

Unifying parameter: κ (relative hygroscopicity)

 κ from HTDMA

κ from CCN

Single parameter quantifying sub- and supersaturated hygroscopic growth

Why is This Important? Linkages between Problems, Measurement Methods, & Research Communities

USDA/USFS Fire Science Laboratory Missoula, MT

Fire Lab At Missoula Experiment (FLAME)

Combustion of Forest Fuels in Burn Chamber

Experimental Setup-FLAME Prequel

Atc

Ammonium Sulfate at FLAME 2006

Relatively Easy Onsite Measurement Validation

Experimental Procedure-Prequel to FLAME

1. Typical Biomass Fuel Samples

2. Laboratory Combustion of Fuel Samples

3. High Volume Filter Sampling of Primary Smoke PM_{2.5} (quartz substrate)

5. Aerosol Generation with Aqueous or Methanol Solution

4. Aqueous or Methanol Extractions of Collected Samples

NaCl in Water and in Methanol

• No Perceptible Artifacts for Known Inorganic Aerosols in CH₃OH

Test Aerosol Critical Supersaturation from HTDMA

•Kappa plot

• Strong gradient in hygroscopicity for fuels-solvent matrix

Hygroscopic Parameter vs. RH

Smoke Extractions Critical Supersaturations

HTDMA-derived κ

FLAME 2006 Growth Factors as a Function of Fuel Type

• Some fresh smokes really like water

• Most grouped near typical values for Yosemite aged smoke+SOA mixture

Chamise: Particle Shrinkage with Increasing RH

Chamise: "Dry" Particle

DRY CHAMISE SMOKE ≈175 monomers Each of Diameter

500 nm

S4700-3812 5.0kV 3.4mm x90.0k SE(U) 6/8/06

iiiiiiiiii 333nm

Courtesy of R. Chakrabarty and P. Arnott

30 nm.

Chamise: "Wet" Particle

Close up, Chamise smoke particle after humidity in excess of 80%. **Diameter** ≈ 300 nm.

S4700-3818 5.0kV 3.3mm x200k SE(U) 6/8/06

Courtesy of R. Chakrabarty and P. Arnott

150nm

Fresh Diesel Emissions Water (non) Uptake

• Role of small quantities of organic/inorganic constituents on soot clusters for growth

FLAME 2006: Hygroscopicity as Function of Composition

• Similar to relationship for Yosemite 2002 smoke+SOA aerosol

κ for Small and Large Particles

Missoula Comparison of derived k's

κ (from GF)

• Effects of aerosol mixing or very low solubility compounds on water uptake properties?

Summary

- Based on κ , consistent hygroscopic growth properties for inorganic aerosols
- Consistent hygroscopic growth properties for extractions from FLAME Prequel
- For FLAME 2006, CCN measurements give larger κ for low hygroscopicity cases

Acknowledgments

CSU Atmospheric Chemistry U.S. National Park Service Joint Fire Science Program U.S.D.A./U.S.F.S. Fire Science Laboratory at Missoula Desert Research Institute

Absorption as a Function of RH

Affect of Aerosol Aging on Organic Hygroscopicity (Petters et al., 2006)

