Springtime Aerosol Observations at Dongsha Atoll, Taiwan

Sonia Kreidenweis, Colorado State University Samuel Atwood (CSU), Jeffrey Reid (NRL), Steven Cliff (UC Davis), Yongjing Zhao (UC Davis), Neng-Huei (George) Lin (NCU Taiwan), and Douglas Westphal (NRL)

Acknowledgments

- NRL Base Research Program
- Colorado State University Center for Geosciences / Atmospheric Research (CG/AR)
- Naval Research Enterprise Internship program (NREIP: S. Atwood)
- Dongsha Experiment deployment:
 - Taiwanese Environmental Protection Agency
 - National Science Foundation
 - staff and students of the National Central University of Taiwan
- Aerosol and Radiation Section, including James Campbell, Cynthia Curtis, Walter Sessions, and Peng Xian-Lynch
- Advanced Light Source program, including Kevin Perry

Background

- Role of anthropogenic aerosols in SE Asia visibility and climate (including aerosolcloud interactions)
 - Steep gradients, seasonal variations in aerosol loading of interest
 - Interactions with "background" aerosol?
- The (Multi-Partner) Seven SouthEast Asian Studies (7 SEAS) Mission: A Program to Study Pollution-Meteorology Feedbacks in Southeast Asia
- Spring 2010 intensive: international field mission to study the transport of smoke and pollution from Indochina to Taiwan, led by National Central Univ of Taiwan
 - Dongsha Island SuperSite in S. China Sea

Bollasina, et al., Science, 2011: Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon

Dongsha (aka Pratas) Island

AERONET Sun Photometer DRUM 8-Stage Cascade Impactor TEOM (PM₁₀ + PM_{2.5})

http://www.taiwantoday.tw/ct.asp?xItem=30627&CtNode=427

Dongsha Island is at edge of transport regimes in springtime

- NOGAPS model output, averaged over the March 31-May 8 study period
- South China Sea in a transitional region between the northern synoptic storm track and dry Southeast Asian boreal winter monsoon
- Strong vertical shear:
 - Boundary layer winds light E / NE
 - Free troposphere W
 - Aerosol sources different in BL and aloft

Regional Aerosol

Surface observations

Six factors extracted (HYSPLIT 5 day backtrajs, GDAS 1°×1°)

Mixture of aerosol types at start Sometimes (short events) fine mode S is dominant

Pollution events mixed with dust during last 2 weeks Clear dust-dominated period

$PM_{2.5}$ and PM_{10} closely track

→ sea salt (and dust) always present → dust present in particles smaller than 2.5 μ m, and <u>dominates variations</u> in PM_{2.5} mass concentrations

Size distribution of elements

Size distribution of elements

Size distribution of elements

Factor analysis appears to be consistent with modeling, other obs

Summary

- Strong evidence in MBL aerosol data of persistent marine + dust aerosol, with stronger dust and pollution transport events superimposed
- Smoke was mostly transported aloft, where it contributed strongly to high AODs, but was likely only sporadically mixed to surface
- Need additional tracers (organic aerosol, levoglucosan) to clearly identify smoke in MBL
- Vertical wind shear separated aerosol types and transport; important to characterize vertical structure of winds and aerosols in this region